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ABSTRACT

Unsteady parallel flow of an electrically conducting viscous

incompressible fluid in an annular channel in the presence of a

radial transverse magnetic field is considered. Assuming the

fluid to be at rest at the initial moment, the velocity distribution

and magnetic field components are obtained in terms of Bessel

and Lommel functions and in the form of convolution integrals

taking the longitudinal pressure as an arbitrary function of time.

Further, taking a step function for the pressure gradient, these

expressions are integrated. The influence of the magnetic field

on the annular flow is investigated. Some numerical examples are

given.



TRANSIENT MAGNETOHYDRODYNAMIC FLOW IN AN ANNULAR CHANNEL

M. N. L. Narasimhan

Introduction

In a previous paper (Narasimhan 1963) we have investigated a pulsating

flow in an annular channel with a radial transverse magnetic field. The problem

of unsteady magnetohydrodynamic flow in a rectangular duct has been solved

by Lundgren, Atabek and Chang (1961). The purpose of the present paper is to

obtain a transient solution for the problem of unsteady flow in an annular

channel with an impressed radial transverse magnetic field. We consider "n

infinitely long annular channel of inner radius a and outer radius b, shown

in Figure 1.

Figure 1. Annular channel with impressed radial field.

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No.: DA-11-022-ORD-z059.
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We consider a radial magnetic field H0  it where w Is a constant, impressed

across the channel. In practice, it is possible to obtain an approximation to

the desired field as explained by Globe (1959).

Governina eauations.

The non-steady flow of an electrically conducting incompressible fluid

(mercury for instance) in the presence of a magnetic field is governed by the

following equations (in m. k. s. units)

V X H J (1)

VX E at (2)

V H =0 (3)

j" TV. +R Vx H )(4)

V. V = 0N

E7+1. = -V +-Vp+VpV2 V+1L TX . (6)

The first four equations are Maxwell's equations, which govern the electromagnetic

field, Eq. (5) and (6) are respectively the equation of continuity of fluid and the

equation of motion. In the above equations we have neglected the displacement

current and assumed that the permeability and dietectric constant are the same

as in a vacuum. Also we have neglected the free charge. We use cylindrical

coordinates (r, 0, z) and make the following assumptions in the manner of

Globe (1959):
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8(1) 8= , on account of axial symmetry.

(2) vr = ve - 0

(3) We assume that the applied field H0 = fixes the normal component0r

of the magnetic field at r = a and r =b for all values of z, and

that this is the only field impressed. Several consequences follow

from this assumption.

(a) Now from (1) and (4) we have

OH HJzc[E z + L('" }z O r H)+ (ar1

which must vanish since E can arise only from an applied fieldZ

"E or free charges in the flow, neither of which exists, and because

(VXH)z must vanish, since V has a z-component only. Again

from (1) and (4) we have

-8H
0J r = °[E r +(VX H)r] V zH = 8z (a.e )

Thus we have

z0 =r .(rH) or He =f(Z) (a.3)

Hence from (a. Z) and (a. 3) we get

V f(z) (a.4)

a function of z alone.
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From (5), and assumptions (2) and (a. 4), we obtain

ýz Ifz) -0,

Bz
whose solution has the form f(z) = Ae , where A and B are

constants. This would make V a constant and since V has

to vanish at the boundaries, this constant would be zero. Thus

the only possibility we have to consider is that f(z) = 0, so that

from (a. 3), He0 0 and hence Jr also vanish everywhere in the channel.

(b) From (3), we have

8H H 8H
i r+r r + Z=8z

8r r r z

whose solution satisfying the boundary conditions can be obtained

by putting
8H
8z

therefore

8H H
8r r

from which it follows

H =Fr+C-
r r

where F and G are constants at any instant of time.

Since the radial magnetic field is to remain at its prescribed

values i and at r = a and r = b, respectively, for all valuesa b

of z, we obtain

i = Fat + 0, += Ca a b b'

which shows that r = 0 and G -- w .
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Therefore
OH
-3a 0 and 7-(rHr r 0 or rH z constant.az r

The radial field must then be equal to the impressed field &nd is

unaffected by the flow and is independent of z

Now we eliminate T and E from (1), (2) and (4) and obtain

the following equation

t H z 1 (9)

With the above assumptions, Equations (6) and (9) reduce to three in number:

OHOrz H z Or 0 (10)
Or z 1r

-•- tr Or az + r -- +r2 -) (11)

OH Ov O2H OH
Z__z. M-z = + z (12)

aSt r Or 2 r Or

H and v are functions of r and t only. It follows from (11) that 12zOz

must be independent of z . By differentiating (10) with respect to z, it

can be seen that 2 is independent of r also. We may therefore write
az " =- P(t).

Once Hz is determined, the variation of p across the channel may be

found by integrating (10):

p(r, z, t)+ a H2 -P(t) z.
2 z

Now (11) and (12) can be rewritten as:

OV Z r Or P(t)+ pv - + -1Vz (13)

Sr Or Or2  r or

OHZ MW OV Z 2Hz O OHz

at r Or Or2 r OrT14
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The initial conditions are:

vz(rt) =0 , at t =0 . (15)

H (r,t)=0 , at t=0 . (16)

The boundary conditions of the problem are:

v (r,t) = 0 at r =a (17)

v (rt) = 0 at r =b (18)

Hzjr,t) = 0 at r =b (19)

8H
- (r,t) = 0 at r = b . (20)

(17) and (18) are the no slip conditions.

(19) follows from the fact that j has a 0-component only so that the currents

in the annular channel are like those in an infinite solenoid. These currents

produce no field for r > b and since there is no impressed field in the

z-direction, continuity of the tangential component of H requires (19) to be

true. (20) is justified as follows:

8H
Zje O •rz

but

aH
and V must vanish at r = b . Hence J0 must also vanish there and -'- too.
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Now we non-dimensionalize the equations (13) to (20) by introducing the

following dimensionless quantities:

Let X a• T

H .H

+(T)= -a p v -z -a p v P(t)

2 2 b
2 n 0 y(1rv)f and let k=6

p is a form of the Hartmann number.

When these non-dimensional quantities are introduced into the equations (13)

to (20), the latter take the form:

1AX v1 + A P + *('r) (21)
y 8t x 2 X e

I 8t -2 X8 X 8) (22)

with the conditions:

v(XT) 0, at T = o (23)

H06,T) 0, at T = 0 (24)

V(lT) = 0 , (25)

V(6,r) 0 , (26)
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H(6,T) - 0 , (27)

S0 at x) 6 . (28)

The solution.

First let us eliminate T from the equations by taking a Laplace transform

with respect to T . Let s be the transformed parameter and T, H and "

denote transformed variables. Thus our problem reduces to:

2-
18 +. +f H s- (M

a H8I O =YsH , (30)

with the conditions:

V(l,s) - 0 , (31)

V(6, s) o , (32)

i(6, s) o 0 p (33)

8H
x-X')a0at X =6 .(34)

The solution of this system of equations for general values of y = ($,a v)I

runs into difficulties. Moreover, in actual physical situations, it will be

sufficient to solve the system for y<< 1, since for most of the incompressible,

electrically conducting viscous fluids on the surface of tLh earth, Y << 1 .
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For instance (Lundgren, Atabek, Chang 1961):

Table I

I
Fluid

Hg (20+C) 3.56 X 10-4

Na (500°C) 1. 55 X 10- 3

Pb (500-C) 0.47 X 10- 3

Hence we shall assume y < I and s ,y . The equations (29) and (30) ,
2

after neglecting terms of order y , reduce to:

2 ax x A

and 2!J" + L -* + 13 0 (36)

From (36) after integrating once and using (32) and (34) we obtain

=- • (37)

Substitution of (37) into (35) yields the following non-homogeneous modified

Bessel equation:

x282  +x 2-v (38)
ax2
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The general solution of (38) is therefore of the form

V (k$,s)-- AI I (X -s• " ) + A K S(XJ-IY )+ I ;(S)s S, i(• x"' ( 39)

where the functions I, K are modified Bessel functions of the first and second

kind respectively and of order p3, and s ,1 is a Lommel function (Watson,

1944) which occurs as a particular integral of (38) . A1 and A2 are arbitrary

constants. This particular integral can be written either as ascending or

descending power series in the argument (Watson 1944) according as

1 *P* -(2p-1) or 1 *P = -(2p-l), where p is a positive integer. For the

sake of simplicity we shall demonstrate the solution when 1 * f* -(2p- 1) .

This condition is satisfied when P = an odd positive integer or zero. Thus we shall

demonstrate the solution when P, the Hartmann number is an odd positive

integer or zero.

Hence in this case we obtain the complete solution of (38) as:

s 1P(l6'Jsl'/ ) {K 4N-s/MY)Ix .s /-Y) -I (4-/ slY) K P k/Js/-y)}{ is- {K P(6%17/--y) I (XIJ7//y )Iý6 ;/y ) KpP(X 4s/y)J

+ S(40il))

(40)
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where

s V(z) - ÷ . (41)
IL )2 -2 2-v2 3)2 (41)(• ÷1)z -• {(•÷+) -_ v} {(•+ 3) -_}

and L & v* -(2p-l), p being a positive integer.

Now taking the inverse Laplace transform of (40) and using the convolution

theorem (Carslaw and Jaeger 1941) we obtain

00 TV(X,T) =Z A n f ý(T - ) exp(- y a n4dg(2

n=l 0

where

"-Y (s n ) {J •( n6 Y n( ))-J (n ))Y (n))
A _ J(" 24 (43)

J and Y being Bessel functions of the first and kind respectively and a ns

(n = 1, 2,... cc) are the roots of the equation

P () YP(&&) - JP (&6 ) Y(a) = 0 (44)

P being a positive odd integer. These roots an s, n = 1, 2 a

to be real and simple since 6 and P are real. [Carslaw, Conduction of heat

(London 1922) p. 128].
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To integrate (42) we have to specify time dependence of the pressure gradient.

Step function Eressure aradignt.

Let us take 4(T) as a step function. That is, let

) for T< 0• -r) =(4 5 )
{b for T >0

Then after integration, Equation (42) gives us

Go _J(a ) J,(an6) [61P 3(a 6) {Va)V n (nXy( n (-ya2TV (X T) 1r 0 Z nz , -{ - - % l
Sn=l an[J 3(an6)-J~lan [-s j(a ) {Jj (an6) Y3(an X- j 3(an X}Y (on] 6)n13 n n n n3 n P

(46)

By taking the inverse transform of (37) and using (26) and (28) we have

OH = I T) 147)

If we now substitute (46) into (47) and integrate, we obtain after using (27):

al 0(a n6) {Jp(an)[Wn(x ) - Wn(6)]

0 61(n)l -(6 -• )n[un(%) Un(6)])
n(.T) T Z O(njf( 4 n] 2 iea

0 "'"- a 2 1 2 2 " -S 1-(
%[ 'c0 22p2( 1sn,)~n {J w(a6)[W(•)-W(6) 1

-YP (a n6)[u n()-u n(6)

(48)
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where

un(k ) - un(6) f -X5 dX

6

Wn(k) - Wn(6). f X dX.

Thus (46) and (48) give the velocity field and magnetic field respectively.

Discussion of the solution.

The expressions (46) and (48) for V and H contain a time-independent

part and a time-dependent part. The first parts, namely the time-independent parts

represent the fully developed values of V and H, respectively.

In the time-dependent parts which contain exponential terms, we find that

starting from rest V and H grow to their developed values without ever

exceeding them. Since a's are all real, it is found that periodic or even

partially periodic flows are impossible with the above choice of step function

pressure gradient unlike the case of a similar type of flow in a rectangular duct

with a transverse magnetic field (Lundgren, Atabek and Chang 1961). Thus it is

found that with a suddenly applied pressure gradient the flow of conducting

incompressible fluids under a radial transverse magnetic field is damped and

partially periodic flows are impossible. We have calculated numerically the

velocity distribution when the radius ratio of the annulus k = 2 , The
a

hydrodynamic and hydromagnetic cases corresponding to the values of the Hartmann
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number P = 0 and p = 5 have been obtained for purposes of comparison. The

roots absn of the equation

Jp(.-) aY( - j (06)Y (a) - 0 6 -- .

have been calculated by using the formula for ans (Gray and Mathews 1895):

n=k4.k + q'ID÷ r -4Dci+Zv .

n k k3 k5

where

nIK m -1 4(m-l1(m-25)(-6 - 1)K= -- 86' q= '-
3(86) 36 - 1)

r 32(m- l(m2 -ll4m+ 1073)(6 -11 425~s~ ,sI m=4~
5(86) 5(6-1)

the first ten roots are tabulated for P3 = 0 and 1 = 5 in table 2.

The Lommel function slX) for P a 0 reduces to the well known relation

(Watson 1944),

s, (x) Ow Jo(x)

where Jo(x) is the Bessel function of the first kind and order zero and s I(X)

has been computed thus. The Lommel function sl, P(x) for P = 5 has been

computed from equation (41) and for large argum'ents x the asymptotic relation

(Watson 1944)

s(X) x + IL l- 1) -VI .L -31 2 z2 1

has been used.
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The results of the computation are given by the velocity profiles in

Figure 2 and Figure 3, obtained as functions of the radial coordinate X . In

Figure 2 the velocity profiles for the hydrodynamic flow (8 a 0), have been

calculated when yT a 0.1, 0. 25, 0. 5, 1. 0 and ce . In Figure 3, the velocity

profiles for the hydromagnetic flow - = 5), have been calculated when

yr a 0. 1, 0. 5 and o0 . From these fl-ures, it is found that the effect of the

magnetic field is to flatten the velocity distribution and to shorten the

development time. In Figure 3, it is clearly seen that the flow development

time for the hydromagnetic flow is very much less compared to the development

time for the hydrodynamic flow.

In this paper the unsteady flow of a conducting fluid through an annular

channel under a radial transverse magnetic field and a suddenly applied pressure

gradient has been considered. For most conducting incompressible fluids for

which y - (,r v)Y < 1, the response of the fluid is damped and partially periodic

flows are found to be impossible. The effect of the magnetic field on the fluid

flow is found to flatten the 'velocity distribution and to shorten the flow

development time.
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The first ten roots anIs of the Equation: J,(a) Yp(, 6) - J0(06) YO(W). 0 for

i 0, 5 andwith 6a2

1 2 3 4 5 6 7 8 9 10

0 3.1227 6.2734 0.4182 12.5614 15.7040 18.8462 21.9883 25.1303 28.2721 31.4139

- - -- -- -4- - -

5 5.9364 7.2291 10.062013.0495 16.0968 19.1748 22.2706 25.3776 28.4923 31.6122

I thank Professor D. Greenspan formaking available some assistance in

numerical calculations. My thanks are also due to Mr. Donald Van Egeren for

performing some of the numerical calculations.
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